Course title: Probability and statistics

Course Basic Information	
Academic Unit:	Faculty of Civil Engineering
Course Name:	Probability and Statistics
Level:	Bachelor (BA)
Course Status:	Mandatory
Year of Study:	II (second)
Number of Hours per Week:	3
ECTS Credits:	3
Time /Venue:	Faculty of civil engineering
Course Teacher:	Abdullah Zejnullahu
Contact Details:	tel. O44-126-989, e-mail: abdullah.zejnullahu@uni-pr.edu
Course Description	The subject concentrates on the achievement of knowledge from the field of Statistics and Probability theory which can be used to facilitate the knowledge from other subjects and can be applied in solving problems from the field of environmental engineering. It introduces concept of the sample space. Classical, Geometrical and Axiomatic definition of Probability. Proofs of the elementary formulas of probability, the formula of the total provability and the Bayes formula. Probability distribution laws. Some important Probability distribution laws which are used in environmental engineering are also introduced. Parameters of the random variable. Types of convergence. Elements of the Mathematical Statistics. A statistical analysis using algebraic and positional mean while applying indicators of absolute and relative variance. Application of well known statistical programs used in environmental engineering.
Course Objectives:	To provide students with the knowledge from the Mathematical Statistics and probability which are necessary when implementing mathematical concepts in the field of engineering and the error theory.
Learning Outcomes:	At the end of this course students will be able to use and to understand concepts of Mathematical Statistics with the aim to use this knowledge as an aide in other subjects which use mathematical statistics as well as to implement this knowledge in solving practical problems from the field of geodetic engineering and geodetic measurement. Upon completion of this course students will be able to: - to understand the concept of event and the set, types of events and their interaction -to implement combinatory in the statistical theory and to evaluate the number of equally possible events -to define the classical, geometrical and axiomatic probability - to present the discrete and continues random variables -to implement some theoretical probability distributions

	$\begin{aligned} & - \text { to ir } \\ & \text { meth } \end{aligned}$	owledge from escriptive sta	matical statistics, analysis in the possible researches.
Student Workload (Consistent with the Learning Outcomes)			
Activity	Hours	Day/ Week	Total
Lectures	2	1-15	30
Theory/ Lab Work	1	1-15	15
Practical Work			
Contact Hours with Teacher /Consultations during Office Hours	2	1-4	8
Field Work			
Colloquium, Seminars	4	2-2	4
Homework			
Self-study Time (in the Library or at Home)	2	2-4	10
Final Exam Preparation	4	1-4	4
Evaluations (Tests, Quiz, Final exam)	2	1-2	4
Projects, Presentations, etc.			
Total	17	15	75
Teaching Methods:	Lectures, exercises during class using different materials, one project work in group of 2-3 students (independent work), individual homework		
Assessment Methods:	First assessment 20% Second Assessment 20% Activity during exercises 10% Attendance 10% Final Exam 40% Total $\mathbf{1 0 0 \%}$		
Literature			
Primary Literature:	1. A.Zejnullahu ,F.Berisha -Matematika III,1997,Prishtinë 2. Sh. Leka - Teoria e probabilitetit dhe statistika matematike,1998,Tiranë. 3. Marilyn K. Pelosi, Theresa M. Sandifer- Elementary statistics, 2003, USA 4. William Navidi- Statistics for Engineers and Scientists, 2006 USA		
Additional Literature:	1. LI.Puka - Probabilitetit ,1998,Tiranë. 2. S. Bushati - Ushtrime të zgjidhura të probabilitetit dhe statistikës,1999,Tiranë. 3. W.Feller -An introduction to probability theory and its application,1970,New York 4. B. Ruseti - Teoria e probabilitetit dhe statistika matematike I dhe II,1975,Tiranë.		

| 5 .S.Elzar - Matematiçka statistika, 1968,Sarajevë | | |
| :--- | :--- | :--- | :--- |
| Course Plan: | Title of the Lecture | exercises |
| Week | SAMPLE SPACE | Solving tasks related to
 the unit being discussed |
| Week 1: | Classical, Geometrical and Axiomatic definition of Probability,
 basic theorems | |
| Week 2: | Probability distribution laws-Random variables | |
| Week 3: | Some distributions, Binomial (Bernouli), Puason's and Normal
 distribution | |
| Week 4: | Pascal's Distribution, Hyper geometrical. Exponential
 distribution, COUCHY, GAUSS,BETA and CHI-Squared
 distribution. | |
| Week 5: | Poek 6: | |
| Week 7: | Moments, generating function. | |
| Week 8: | The uniqueness theorem and the inversion. | |
| Week 9: | Convergence. Types of convergence | |
| Week 10: | Law of Large numbers (LLN) | |
| Week 11: | Markov chains | |
| Week 12: | Basic elements of mathematical Statistics | |
| Week 13: | Statistical analysis | |
| Week 14: | Approximate numbers and round-off error | |
| Week 15: | Approximate solutions of algebraic equations. | |

We start and finish class on time.
Tools used during class must be cleaned and stored away at the end of class.
Mobile/smart phones, and other electronic devices (e.g. iPods) must be turned off (or on vibrate) and hidden from view during class time.
Laptop and tablet computers are allowed for quiet use only; other activities such as checking personal email or browsing the Internet are prohibited.

